
1. Introduction

Real-Time Operating Systems (RTOSs) are a
key software module for embedded systems,
often requiring properties of high reliability
and safety. Unfortunately, most commercial,
as well as open source implementations
cannot be verified or even certified, e.g.
according to the DoD_178B [1] or IEC61508
[2] standards. Similarly, software enginee-
ring is often done in a non-systematic way,
although well defined and established Sys-
tems Engineering Processes exist. The soft-

ware is rarely proven to be correct even
though this is possible with formal model
checkers [3]. In the context of a unified sys-
tems engineering approach [4] we undertook
a research project where we followed a
stricter methodology, including formal model
checking, to obtain a network-centric RTOS
which can be used as a trusted component.

The history of this project goes back to the
early 1990’s when a distributed real-time
RTOS called Virtuoso (Eonic Systems) [5]
was developed for the INMOS transputer.

OpenComRTOS:
Formally developed RTOS
for Heterogeneous Systems

In Kooperation mit:

März 2010Real Time Operating Systems

Director’s Brief

Abstract

OpenComRTOS is one of the few Real-Time Operating Systems for embedded systems
that was developed using formal modelling techniques. The goal was to obtain a pro-
ven dependable component with a clean architecture that delivers high performance
on a wide variety of networked embedded systems, ranging from a single processor
to distributed systems. The result is a scalable reliable communication system with
 real-time capabilities. Besides, a rigorous formal verification of the kernel algorithms
led to an architecture which has several properties that enhance safety and real-time
properties of the RTOS. The code size in particular is very small, typically 10 times less
than a typical equivalent single processor RTOS. The small code size allows a much
better use of the on-chip memory resources, which increases the speed of execution
due to the reduction of wait states caused by the use of external memory.

To this point we ported OpenComRTOS to the MicroBlaze processor from Xilinx, the
Leon3 from ESA, the ARM Cortex-M3, the Melexis MLX16, and the XMOS. This paper
reports code size and preformance figures of the OpenComRTOS on these processors.

Real Time Operating Systems �

Seite 1

Introduction
The history goes back to the early 1990’s
when a distributed real-time RTOS
called Virtuoso was developed for the
INMOS transputer.

Seite 2

OpenComRTOS architecture
For OpenComRTOS a layered architec-
ture was adopted which is based on
semantic layering.

Seite 4

OpenComRTOS on Embedded Targets
Porting OpenComRTOS to the Micro-
blaze soft processor was the first major
work done.

Fo
to

: ©
 F

ra
nz

 P
flu

eg
l –

 F
ot

ol
ia

.c
om

 (o
.)

Director’s Brief

Real Time Operating Systems �

This processor had built-in support for con-
currency as well as interprocess communi-
cation and was enabled for parallel proces-
sing by way of 4 communication links.
Virtuoso allowed such a network of proces-
sors to be programmed in a topology trans-
parent way. Later, the software evolved and
was ported from single chip micro-control-
lers to systems with over a thousand Digital
Signal Processors until the technology was
acquired by Wind River and after a few
years removed it from the market. The Open-
ComRTOS project was motivated by the les-
sons learned from developing three Virtuoso
generations. These lessons became part of
the requirements. We list the most important
ones:
• �Scalability: The RTOS should support very

small single processor systems, as well as
widely distributed processing systems in-
terconnected through external networks
like the internet. To achieve that, the soft-
ware components must be independent of
the execution environment. In other words,
it must be possible to map the software
components onto the network topology.

• �Heterogeneous: The RTOS should support
systems which consist of multiple nodes,
with different CPU architectures. Naturally,
different link technologies should be usab-
le as well, ranging from low speed links such
as RS232 up to high speed Ethernet links.

• �Efficiency: The essence of multi-processor
systems is communication. The challenge,
from an RTOS point of view, is keeping the
latency to a minimum while at the same
time maximizing the performance. This is
achieved when most of the critical code

resides in the limited amount of on-chip
memory.

• �Small code size: This has a double benefit:
a) performance and b) less complexity.
Less complex systems have fewer poten-
tial sources of errors and side-effects.

• �Dependability: As testing of distributed
systems becomes very time consuming, it
is mandatory that the system software can
be trusted from the start. As errors typical-
ly occur in “corner cases”, the use of for-
mal methods was deemed necessary.

• �Maintainability and ease of development:
The code needs to be clear and simple to
facilitate the development of e.g. drivers,
the latter have often been the weak point
in system software.

The scalability requirement imposes that
data-communication is central in the RTOS
architecture. The trustworthiness and main-
tainability aspects are addressed in the
context of a Systems Engineering methodo-
logy. The use of common semantics during
all activities is crucial, because only com-
mon semantics enable us to generate most
of the implementation code from the model-
ling and simulation phase. Generated code
is more trustworthy compared to handwrit-
ten code. To be able to use an “Interacting
Entities” paradigm requires a runtime envi-
ronment that supports concurrency and syn-
chronization/communication in a native way
between concurrent entities. OpenComRTOS
is this runtime environment.

2. OpenComRTOS architecture

Even with the problems mentioned above,
Virtuoso was a successful product. The goal
was to improve on its weaknesses. Its archi-
tecture had a high performance, but was
very hard to port and to maintain. Hence, for
OpenComRTOS we adopted a layered archi-
tecture which is based on semantic layering.
The lowest functionality level is limited to
priority based preemptive multitasking. On
this level Tasks exchange standardized
Packets using an intermediate entity we call
Port. Two tasks rendezvous by one task sen-
ding a ‘put’ request and the other task sen-
ding a ‘get’ request to the Port. Hence, Tasks
can synchronise and communicate using
Packets and Ports. Hence, it becomes
straightforward to provide services that ope-
rate in a transparent way across processor
boundaries.

Director’s Brief

Real Time Operating Systems 2

It became straightforward to
provide services that operate
in a transparent way across
processor boundaries.

A Rollercoaster can be fun. Was it IEC-61508 Safety Certified?

Director’s Brief

Real Time Operating Systems �

At the next semantic level we added more
traditional RTOS services like events, sema-
phores, etc (see Table 2 on Page 4 for the
included RTOS services). Finally, the archi-
tecture was kept simple and modular by
developing kernel and drivers as Tasks. All
these Tasks have a ‘Task input Port’ for ac-
cepting Packets from other Tasks.

2.1 Novelties in the architecture

OpenComRTOS has a semantically layered
architecture. Table 1 provides an overview
over the available services at the different

levels. At the lowest: level the minimum set
of Entities provides everything that is nee-
ded to build a small networked real-time ap-
plication.

The Entities needed are Tasks (having a pri-
vate function and workspace), and Interac-
ting Entities, called Ports, to synchronize and
communicate between the Tasks (see Figure
1). Ports act like channels in the tradition of
Hoare’s CSP [6], but they allow multiple wai-
ters and asynchronous communication.

One of the Tasks is a Kernel Task which
schedules the other Tasks in order of priority
and manages Port-based services. Driver
Tasks handle inter-node communication.
Pre-allocated as well as dynamically alloca-
ted Packets are used as carriers for all acti-
vities in the RTOS, such as: service requests
to the kernel, Port synchronization, data-
communication, etc. Each Packet has a fixed
size header and data payload with a user
defined but global data size. This significant-
ly simplifies the Packet management, parti-
cularly at the communication layer. A router
function also transparently forwards
Packets in order of priority between the net-
work nodes. The priority of a Packet is the
same as the priority of the Task from which
the Packet originates.

In the next semantic level services and Enti-
ties were added, similar to those which can
be found in most RTOSs: Boolean events,
counting semaphores, FIFO queues, resour-
ces, memory pools, etc. The formal model-
ling leads to the definition of all these Enti-
ties as semantic variants of a common and
generic entity type. We called this generic
entity a “Hub”. In addition, the formal model-
ling also helped to define “clean” semantics
for such services, whereas ad-hoc imple-
mentations often have side-effects. Table 2
summarises the semantics.

Figure 1: OpenComRTOS-L0 Application View

Table 1: Overview of the available Entities on the different Layers

Layer 	A vailable Entities

L0 	 Task, Port

L1 	� Task, Hub based implementations of: Port, Boolean Event, Counting
Semaphore, FIFO Queue, Resource, Memory Pool

L2 	 Mobile Entities: all L1 entities moveable between Nodes.

Director’s Brief

Real Time Operating Systems �

Table 2: Semantics of L1 Entities

L1 Entity 	 Semantics

Event 	 Synchronisation on a Boolean value.

Counting	 Synchronisation with counter allowing asynchronous signalling.
Semaphore

Port 	 Synchronisation with exchange of a Packet.

FIFO queue 	� Buffered communication of Packets. Synchronisation when queue is
full or empty.

Resource 	� Event used to create a logical critical section. Resources have an
owner Task when locked.

Memory Pool 	Linked list of memory blocks protected with a resource.

The services are offered in a non-blocking
variant (_NW), a blocking variant (_W), a
blocking with time out variant (_WT), and
an asynchronous variant (_A) for services
where this is applicable (currently in deve-
lopment). All services are topology transpa-
rent and there is no restriction in the map-
ping of Task and kernel Entities onto this
network. See Tables 2 and 3 for details on
the semantics.

Using a single generic entity leads to more
code reuse, therefore the resulting code size
is at least 10 times less than for an RTOS
with a more traditional architecture. One
could of course remove all such application-
oriented services and just use Hub based
services. Unfortunately, this has the draw-

back that services loose their specific se-
mantic richness, e.g. resource locking clear-
ly expresses that the Task enters a critical
section in competition with other Tasks. Also
erroneous runtime conditions, like raising an
event twice (with loss of the previous event),
are easier to detect at application level com-
pared with the case when only a generic
Hub is used.

During the formal modelling process, we al-
so discovered weaknesses in the traditional
way priority inheritance is implemented in
most RTOSs. Fortunately, we found a way to
reduce the total blocking time. In single pro-
cessor RTOS systems this is less of an issue,
but in multi-processor systems, all nodes
can originate service requests and resource
locking is a distributed service. Hence, the
waiting lists can grow longer and lower prio-
rity Tasks can block higher priority ones
while waiting for the resource. This was sol-
ved by postponing the resource assignment
until the rescheduling moment. Finally, by
generalization, also memory allocation has
been approached like a resource locking
service. In combination with the Packet
Pool, this opens new possibilities for safe
and secure memory management, e.g. the
OpenCom-RTOS architecture is free from
buffer overflow by design.

3. �OpenComRTOS on Embedded
Targets

Porting OpenComRTOS to the Microblaze
soft processor was the first major work done
by Altreonic. This section compares the
Microblaze port with the port of OpenCom-
RTOS to the MLX16. It also gives performance
and code size figures for other available ports
of OpenComRTOS.

3.1 Code size figures

Table 4 reports the code size figures for indi-
vidual L1 Services for all different targets we
support. The total code size of ‘Total L1 Ser-
vices’ is just the sum of the individual code
sizes. The Service ‘L1 Hub shared’ repre-
sents the code necessary to achieve the
functionality of the Hub, upon which all other
L1 Services depend. This explains why ad-
ding the Port functionality requires only 4-8
Bytes more code.

Table 3: Service synchronization variant

Services	 Synchronising Behavior
variants

“Single-phase” services

_NW 	� Non Waiting: when the matching filter fails the Task returns with a
RC_Failed.

_W 	� Waiting: when the matching filter fails the Task waits until such
events happens.

_WT 	� Waiting with a time-out. Waiting is limited in time defined by the
time-out value.

“Two-phase” services

_A 	� Asynchronous: when the entity is compatible with it, the Task conti-
nues independently of success or failure and will resynchronize later
on. This class of services is called “two-phase” services.

Director’s Brief

Real Time Operating Systems �

In general the code size figures are lower
for the MLX16, ARM-Cortex-M3 and XMOS
due to their 16bit instruction set. Both Micro-
blaze and Leon3 in contrast use a 32bit ins-
truction set. Even among the targets with
16bit instruction sets we can see vast dif-
ferences in the code size. One reason for this
is the number of registers these targets ha-
ve. The MLX16 has only four registers which
need to be saved during a context switch. In
contrast the XMOS port has to save 13 regis-
ters during a context switch. This has also

an impact on the performance figures,
which are shown in Table 5 on page 6.

3.2 Performance figures

The performance figures were evaluated by
measuring the loop time. We define this loop
time as the time a particular target takes to
complete one loop in the semaphore loop
example. The resulting measurement values
allow us to compare the performance of
OpenComRTOS on different target platforms.

OpenComRTOS abstracts the hardware from
the application programmer, therefore the
application source code, which is executed
by the individual targets, stays the same. To
show how compact OpenComRTOS applica-
tion code is, Listings 1 and 2 show the sour-
ce code for the Semaphore loop example
which was used to measure the loop time
figures.

Listing 1 shows the code for task T1 which
represents T1. The Arguments of the func-
tion call are not used. Line 2 defines 3 vari-
ables of type 32 bit unsigned int. All the work
is done within the infinite loop, starting from
Line 3. In Line 4 the number of elapsed pro-
cessor cycles is stored in the start vari-
able. The code block from Line 8 to 8 signals
semaphore 1 (S1) 1000 times and tests
semaphore 2 (S1) also 1000 times; for the
semantics of L1_SignalSemaphore and
L1_TestSemaphore see Table 2. In Line
9 the elapsed processor cycles are stored
in the stop variable. For completeness,
Listing 2 shows the source code for T2
which represents T2.

After having obtained the start and stop
values for all the targets we use the fol-
lowing Equation to calculate the loop time.

Loop time =
 stop – start

	 Clock speed x 1000
(1)

This equation does not take into account the
overhead from getting the elapsed clock
cycles and from the loop implementation.
This overhead is negligible compared with
the processing time for signalling and tes-
ting the semaphores. Table 5 reports the
measured loop times for the different tar-
gets. Each run of the loop requires eight
context switches, this is caused by the fact
that the Semaphores are accessed in the

Table 4: �OpenComRTOS L1 code size figures (in Bytes)
obtained for our different ports

Service 	ML X16 	M icroBlaze 	L eon3 	ARM 	 XMOS

L1 Hub shared 	 400 	 4756 	 4904 	 2192 	 4854

L1 Port 	 4 	 8 	 8 	 4 	 4

L1 Event 	 70 	 88 	 72 	 36 	 54

L1 Semaphore 	 54 	 92 	 96 	 40 	 64

L1 Resource 	 104 	 96 	 76 	 40 	 50

L1 FIFO 	 232 	 356 	 332 	 140 	 222

L1 PacketPool	 NA 	 296 	 268 	 120 	 166

Total L1 Services	 1048 	 5692 	 5756 	 2572 	 5414

	 void T2 (L1_TaskArguments Arguments){
2 		 while(1) {
			 L1_TestSemaphore_W(S1);
4 			 L1_SignalSemaphore_W(S2);
		 }
6 	 }

Listing 2: Source code for task T2

	 void T1 (L1_TaskArguments Arguments){
 2 		 L1_UINT32 i=0, start=0, stop=0;
	 	 while(1) {
 4 			 start = L1_getElapsedCycles();
	 	 	 for (i = 0; i < 1000; i++){
 6 				 L1_SignalSemaphore_W(S1);
				 L1_TestSemaphore_W(S2);
 8 			 }
			 stop = L1_getElapsedCycles();
10 			 }
	 }

Listing 1: Source code for task T1

Director’s Brief

Real Time Operating Systems �

kernel context. Therefore, any access to a
Semaphore requires to switch into the ker-
nel context and afterwards to switch back to
therequesting task.

The loop times expose the differences
between the individual architectures. What
sticks out is the performance of the MLX161,
which despite its low Clock speed of only
6MHz is faster than the Leon3 running at
more than 6 times the Clock frequency.
One of the main reasons for this is that the
MLX16 has only to save and restore 4 16bit
registers during a context switch compared
to 32 32bit registers in case of the Leon3.
Furthermore, the Leon3 uses only external
memory, whereas all other targets use inter-
nal memory.

4. Conclusions

The OpenComRTOS project has shown that
even for software domains which are often
associated with ‘black art’ programming,
formal modelling works very well. The resul-
ting software is not only very robust and
maintainable but also respectably compact
and fast. It is also inherently safer than stan-
dard implementation architectures. Its use
however must be integrated with a global
systems engineering approach, because the
process of incremental development and
modelling is as important as using the formal
model checker itself. The use of formal mo-
delling has resulted in many improvements
of the RTOS properties. The previous section
analysed two distinct RTOS properties.
Namely, code size and speed measure-
ments. With a code size as low as 1kiB a
stripped down version of OpenComRTOS fits
in the memory of most embedded targets.
When more memory is available, the full
kernel fits in less than 10kiB on many tar-
gets. The loop time measurements brought
out the differences between individual tar-
get architectures. In general however, the
measured loop times confirm that Open-
ComRTOS performs well on a wide verity
of possible targets.

Table 5: �OpenComRTOS loop times obtained for our different ports

 	ML X16 	M icroBlaze	L eon3 	ARM 	 XMOS

Clock speed 	 6MHz 	 100MHz 	 40MHz 	 50MHz 	 100MHz

Context size 	 4 x 16bit 	 32 x 32bit 	 32 x 32bit 	 16 x 32bit 	 14 x 32bit

Memory location 	 internal 	 internal 	 external 	 internal 	 internal

Loop time 	 100.8 μs 	 33.6 μs 	 136.1 μs 	 52.7 μs 	 26.8 μs

IMPRESSUM

Der „Director‘s Brief“ ist ein Produkt
der Deutsche Messe Interactive GmbH,
Messegelände, 30521 Hannover
Geschäftsführer:
Dr. Michael Breyer (v.i.S.d.P.)
Tel.: +49 (511) 330.601.0
Fax: +49 (511) 330.601.08

Web: www.messe-interactive.de

Redaktionelle Mitarbeit
Oliver Häußler

Layout:
Claudia Wolff

References

[1] �RTCA. DO-178B Software Considerations in Airborne Systems and Equipment Certification,
January 1992.

[2] �ISO/IEC. TR 61508 Functional Safety of electrical / electronic / programmable electronic
safety-related systems, January 2005.

[3] �Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR Manual.
http://www.fsel.com/fdr2_manual.html.

[4] �The Open License Sociaty researches and develops a systematic systems engineering
methodology based on interacting entities and thrustworthy components.
www.openlicensesociety.org.

[5] �Eonic Systems. Virtuoso The Virtual Single Processor Programming System User Manual.
Available at: http://www.classiccmp.org/transputer/microkernels.htm.

[6] �C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, 1978.

1 Stripped down version of OpenComRTOS

The OpenComRTOS project
has shown that formal
modelling works very well.

