
1. Introduction 

Real-Time Operating Systems (RTOSs) are a 
key software module for embedded systems, 
often requiring properties of high reliability 
and safety. Unfortunately, most commercial, 
as well as open source implementations 
cannot be verified or even certified, e.g.  
according to the DoD_178B [1] or IEC61508 
[2] standards. Similarly, software enginee-
ring is often done in a non-systematic way, 
although well defined and established Sys-
tems Engineering Processes exist. The soft-

ware is rarely proven to be correct even 
though this is possible with formal model 
checkers [3]. In the context of a unified sys-
tems engineering approach [4] we undertook 
a research project where we followed a 
stricter methodology, including formal model 
checking, to obtain a network-centric RTOS 
which can be used as a trusted component. 

The history of this project goes back to the 
early 1990’s when a distributed real-time 
RTOS called Virtuoso (Eonic Systems) [5] 
was developed for the INMOS transputer. 
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Abstract

OpenComRTOS is one of the few Real-Time Operating Systems for embedded systems 
that was developed using formal modelling techniques. The goal was to obtain a pro-
ven dependable component with a clean architecture that delivers high performance 
on a wide variety of networked embedded systems, ranging from a single processor  
to distributed systems. The result is a scalable reliable communication system with  
 real-time capabilities. Besides, a rigorous formal verification of the kernel algorithms 
led to an architecture which has several properties that enhance safety and real-time 
properties of the RTOS. The code size in particular is very small, typically 10 times less 
than a typical equivalent single processor RTOS. The small code size allows a much 
better use of the on-chip memory resources, which increases the speed of execution 
due to the reduction of wait states caused by the use of external memory. 

To this point we ported OpenComRTOS to the MicroBlaze processor from Xilinx, the  
Leon3 from ESA, the ARM Cortex-M3, the Melexis MLX16, and the XMOS. This paper 
reports code size and preformance figures of the OpenComRTOS on these processors. 
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The history goes back to the early 1990’s 
when a distributed real-time RTOS 
called Virtuoso was developed for the 
INMOS transputer.
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OpenComRTOS architecture
For OpenComRTOS a layered architec-
ture was adopted which is based on 
semantic layering. 
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OpenComRTOS on Embedded Targets 
Porting OpenComRTOS to the Micro-
blaze soft processor was the first major 
work done.
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This processor had built-in support for con-
currency as well as interprocess communi-
cation and was enabled for parallel proces-
sing by way of 4 communication links. 
Virtuoso allowed such a network of proces-
sors to be programmed in a topology trans-
parent way. Later, the software evolved and 
was ported from single chip micro-control-
lers to systems with over a thousand Digital 
Signal Processors until the technology was 
acquired by Wind River and after a few 
years removed it from the market. The Open-
ComRTOS project was motivated by the les-
sons learned from developing three Virtuoso 
generations. These lessons became part of 
the requirements. We list the most important 
ones: 
• �Scalability: The RTOS should support very 

small single processor systems, as well as 
widely distributed processing systems in-
terconnected through external networks 
like the internet. To achieve that, the soft-
ware components must be independent of 
the execution environment. In other words, 
it must be possible to map the software 
components onto the network topology.

• �Heterogeneous: The RTOS should support 
systems which consist of multiple nodes, 
with different CPU architectures. Naturally, 
different link technologies should be usab-
le as well, ranging from low speed links such 
as RS232 up to high speed Ethernet links.

• �Efficiency: The essence of multi-processor 
systems is communication. The challenge, 
from an RTOS point of view, is keeping the 
latency to a minimum while at the same  
time maximizing the performance. This is 
achieved when most of the critical code 

resides in the limited amount of on-chip 
memory.

• �Small code size: This has a double benefit: 
a) performance and b) less complexity. 
Less complex systems have fewer poten-
tial sources of errors and side-effects.

• �Dependability: As testing of distributed 
systems becomes very time consuming, it 
is mandatory that the system software can 
be trusted from the start. As errors typical-
ly occur in “corner cases”, the use of for-
mal methods was deemed necessary.

• �Maintainability and ease of development: 
The code needs to be clear and simple to  
facilitate the development of e.g. drivers, 
the latter have often been the weak point  
in system software. 

The scalability requirement imposes that  
data-communication is central in the RTOS 
architecture. The trustworthiness and main-
tainability aspects are addressed in the 
context of a Systems Engineering methodo-
logy. The use of common semantics during 
all activities is crucial, because only com-
mon semantics enable us to generate most 
of the implementation code from the model-
ling and simulation phase. Generated code 
is more trustworthy compared to handwrit-
ten code. To be able to use an “Interacting 
Entities” paradigm requires a runtime envi-
ronment that supports concurrency and syn-
chronization/communication in a native way 
between concurrent entities. OpenComRTOS 
is this runtime environment.

2. OpenComRTOS architecture

Even with the problems mentioned above, 
Virtuoso was a successful product. The goal 
was to improve on its weaknesses. Its archi-
tecture had a high performance, but was  
very hard to port and to maintain. Hence, for 
OpenComRTOS we adopted a layered archi-
tecture which is based on semantic layering. 
The lowest functionality level is limited to 
priority based preemptive multitasking. On 
this level Tasks exchange standardized  
Packets using an intermediate entity we call 
Port. Two tasks rendezvous by one task sen-
ding a ‘put’ request and the other task sen-
ding a ‘get’ request to the Port. Hence, Tasks 
can synchronise and communicate using 
Packets and Ports. Hence, it becomes 
straightforward to provide services that ope-
rate in a transparent way across processor 
boundaries.
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It became straightforward to  
provide services that operate  
in a transparent way across  
processor boundaries.

A Rollercoaster can be fun. Was it IEC-61508 Safety Certified?
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At the next semantic level we added more 
traditional RTOS services like events, sema-
phores, etc (see Table 2 on Page 4 for the  
included RTOS services). Finally, the archi-
tecture was kept simple and modular by  
developing kernel and drivers as Tasks. All 
these Tasks have a ‘Task input Port’ for ac-
cepting Packets from other Tasks.

2.1 Novelties in the architecture

OpenComRTOS has a semantically layered 
architecture. Table 1 provides an overview 
over the available services at the different 

levels. At the lowest: level the minimum set 
of Entities provides everything that is nee-
ded to build a small networked real-time ap-
plication.

The Entities needed are Tasks (having a pri-
vate function and workspace), and Interac-
ting Entities, called Ports, to synchronize and 
communicate between the Tasks (see Figure 
1). Ports act like channels in the tradition of 
Hoare’s CSP [6], but they allow multiple wai-
ters and asynchronous communication.

One of the Tasks is a Kernel Task which 
schedules the other Tasks in order of priority 
and manages Port-based services. Driver 
Tasks handle inter-node communication. 
Pre-allocated as well as dynamically alloca-
ted Packets are used as carriers for all acti-
vities in the RTOS, such as: service requests 
to the kernel, Port synchronization, data-
communication, etc. Each Packet has a fixed 
size header and data payload with a user 
defined but global data size. This significant-
ly simplifies the Packet management, parti-
cularly at the communication layer. A router 
function also transparently forwards  
Packets in order of priority between the net-
work nodes. The priority of a Packet is the 
same as the priority of the Task from which 
the Packet originates.

In the next semantic level services and Enti-
ties were added, similar to those which can 
be found in most RTOSs: Boolean events, 
counting semaphores, FIFO queues, resour-
ces, memory pools, etc. The formal model-
ling leads to the definition of all these Enti-
ties as semantic variants of a common and 
generic entity type. We called this generic 
entity a “Hub”. In addition, the formal model-
ling also helped to define “clean” semantics 
for such services, whereas ad-hoc imple-
mentations often have side-effects. Table 2 
summarises the semantics. 

Figure 1: OpenComRTOS-L0 Application View

Table 1: Overview of the available Entities on the different Layers

Layer 	A vailable Entities

L0 	 Task, Port

L1 	� Task, Hub based implementations of: Port, Boolean Event, Counting  
Semaphore, FIFO Queue, Resource, Memory Pool

L2 	 Mobile Entities: all L1 entities moveable between Nodes.
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Table 2: Semantics of L1 Entities

L1 Entity 	 Semantics

Event 	 Synchronisation on a Boolean value.

Counting	 Synchronisation with counter allowing asynchronous signalling. 
Semaphore

Port 	 Synchronisation with exchange of a Packet.

FIFO queue 	� Buffered communication of Packets. Synchronisation when queue is 
full or empty.

Resource 	� Event used to create a logical critical section. Resources have an 
owner Task when locked.

Memory Pool 	Linked list of memory blocks protected with a resource.

The services are offered in a non-blocking 
variant (_NW), a blocking variant (_W), a 
blocking with time out variant (_WT), and  
an asynchronous variant (_A) for services 
where this is applicable (currently in deve-
lopment). All services are topology transpa-
rent and there is no restriction in the map-
ping of Task and kernel Entities onto this 
network. See Tables 2 and 3 for details on 
the semantics.

Using a single generic entity leads to more 
code reuse, therefore the resulting code size 
is at least 10 times less than for an RTOS 
with a more traditional architecture. One 
could of course remove all such application-
oriented services and just use Hub based 
services. Unfortunately, this has the draw-

back that services loose their specific se-
mantic richness, e.g. resource locking clear-
ly expresses that the Task enters a critical 
section in competition with other Tasks. Also 
erroneous runtime conditions, like raising an 
event twice (with loss of the previous event), 
are easier to detect at application level com-
pared with the case when only a generic 
Hub is used.

During the formal modelling process, we al-
so discovered weaknesses in the traditional 
way priority inheritance is implemented in 
most RTOSs. Fortunately, we found a way to 
reduce the total blocking time. In single pro-
cessor RTOS systems this is less of an issue, 
but in multi-processor systems, all nodes 
can originate service requests and resource 
locking is a distributed service. Hence, the 
waiting lists can grow longer and lower prio-
rity Tasks can block higher priority ones  
while waiting for the resource. This was sol-
ved by postponing the resource assignment 
until the rescheduling moment. Finally, by 
generalization, also memory allocation has 
been approached like a resource locking 
service. In combination with the Packet 
Pool, this opens new possibilities for safe 
and secure memory management, e.g. the 
OpenCom-RTOS architecture is free from 
buffer overflow by design.

3. �OpenComRTOS on Embedded 
Targets

Porting OpenComRTOS to the Microblaze 
soft processor was the first major work done 
by Altreonic. This section compares the 
Microblaze port with the port of OpenCom-
RTOS to the MLX16. It also gives performance 
and code size figures for other available ports 
of OpenComRTOS.

3.1 Code size figures

Table 4 reports the code size figures for indi-
vidual L1 Services for all different targets we 
support. The total code size of ‘Total L1 Ser-
vices’ is just the sum of the individual code 
sizes. The Service ‘L1 Hub shared’ repre-
sents the code necessary to achieve the 
functionality of the Hub, upon which all other 
L1 Services depend. This explains why ad-
ding the Port functionality requires only 4-8 
Bytes more code.

Table 3: Service synchronization variant

Services	 Synchronising Behavior 
variants

“Single-phase” services

_NW 	� Non Waiting: when the matching filter fails the Task returns with a 
RC_Failed.

_W 	� Waiting: when the matching filter fails the Task waits until such 
events happens.

_WT 	� Waiting with a time-out. Waiting is limited in time defined by the 
time-out value.

“Two-phase” services

_A 	� Asynchronous: when the entity is compatible with it, the Task conti-
nues independently of success or failure and will resynchronize later 
on. This class of services is called “two-phase” services.



Director’s Brief

Real Time Operating Systems �

In general the code size figures are lower 
for the MLX16, ARM-Cortex-M3 and XMOS 
due to their 16bit instruction set. Both Micro-
blaze and Leon3 in contrast use a 32bit ins-
truction set. Even among the targets with 
16bit instruction sets we can see vast dif-
ferences in the code size. One reason for this 
is the number of registers these targets ha-
ve. The MLX16 has only four registers which 
need to be saved during a context switch. In 
contrast the XMOS port has to save 13 regis-
ters during a context switch. This has also 

an impact on the performance figures, 
which are shown in Table 5 on page 6.

3.2 Performance figures

The performance figures were evaluated by 
measuring the loop time. We define this loop 
time as the time a particular target takes to 
complete one loop in the semaphore loop 
example. The resulting measurement values 
allow us to compare the performance of 
OpenComRTOS on different target platforms.

OpenComRTOS abstracts the hardware from 
the application programmer, therefore the 
application source code, which is executed 
by the individual targets, stays the same. To 
show how compact OpenComRTOS applica-
tion code is, Listings 1 and 2 show the sour-
ce code for the Semaphore loop example 
which was used to measure the loop time  
figures.

Listing 1 shows the code for task T1 which 
represents T1. The Arguments of the func-
tion call are not used. Line 2 defines 3 vari-
ables of type 32 bit unsigned int. All the work 
is done within the infinite loop, starting from 
Line 3. In Line 4 the number of elapsed pro-
cessor cycles is stored in the start vari-
able. The code block from Line 8 to 8 signals 
semaphore 1 (S1) 1000 times and tests  
semaphore 2 (S1) also 1000 times; for the 
semantics of L1_SignalSemaphore and 
L1_TestSemaphore see Table 2. In Line 
9 the elapsed processor cycles are stored  
in the stop variable. For completeness,  
Listing 2 shows the source code for T2 
which represents T2.

After having obtained the start and stop 
values for all the targets we use the fol-
lowing Equation to calculate the loop time.

Loop time =
    stop – start

	      Clock speed x 1000    
(1)

This equation does not take into account the 
overhead from getting the elapsed clock 
cycles and from the loop implementation. 
This overhead is negligible compared with 
the processing time for signalling and tes-
ting the semaphores. Table 5 reports the 
measured loop times for the different tar-
gets. Each run of the loop requires eight 
context switches, this is caused by the fact 
that the Semaphores are accessed in the 

Table 4: �OpenComRTOS L1 code size figures (in Bytes)  
obtained for our different ports

Service 	ML X16 	M icroBlaze 	L eon3 	ARM  	 XMOS

L1 Hub shared 	 400 	 4756 	 4904 	 2192 	 4854

L1 Port 	 4 	 8 	 8 	 4 	 4

L1 Event 	 70 	 88 	 72 	 36 	 54

L1 Semaphore 	 54 	 92 	 96 	 40 	 64

L1 Resource 	 104 	 96 	 76 	 40 	 50

L1 FIFO 	 232 	 356 	 332 	 140 	 222

L1 PacketPool	 NA 	 296 	 268 	 120 	 166

Total L1 Services	 1048 	 5692 	 5756 	 2572 	 5414

	 void T2 (L1_TaskArguments Arguments){
2 		  while(1) {
			   L1_TestSemaphore_W(S1);
4 			   L1_SignalSemaphore_W(S2);
		  }
6 	 }

Listing 2: Source code for task T2

	 void T1 (L1_TaskArguments Arguments){
 2 		  L1_UINT32 i=0, start=0, stop=0;
	 	 while(1) {
 4 			   start = L1_getElapsedCycles();
	 	 	 for (i = 0; i < 1000; i++){
 6 				    L1_SignalSemaphore_W(S1);
				    L1_TestSemaphore_W(S2);
 8 			   }
			   stop = L1_getElapsedCycles();
10 			   }
	 }

Listing 1: Source code for task T1
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kernel context. Therefore, any access to a 
Semaphore requires to switch into the ker-
nel context and afterwards to switch back to 
therequesting task.

The loop times expose the differences 
between the individual architectures. What 
sticks out is the performance of the MLX161, 
which despite its low Clock speed of only 
6MHz is faster than the Leon3 running at  
more than 6 times the Clock frequency.  
One of the main reasons for this is that the 
MLX16 has only to save and restore 4 16bit 
registers during a context switch compared 
to 32 32bit registers in case of the Leon3. 
Furthermore, the Leon3 uses only external 
memory, whereas all other targets use inter-
nal memory.

4. Conclusions

The OpenComRTOS project has shown that 
even for software domains which are often 
associated with ‘black art’ programming, 
formal modelling works very well. The resul-
ting software is not only very robust and 
maintainable but also respectably compact 
and fast. It is also inherently safer than stan-
dard implementation architectures. Its use 
however must be integrated with a global 
systems engineering approach, because the 
process of incremental development and 
modelling is as important as using the formal 
model checker itself. The use of formal mo-
delling has resulted in many improvements 
of the RTOS properties. The previous section 
analysed two distinct RTOS properties.  
Namely, code size and speed measure-
ments. With a code size as low as 1kiB a 
stripped down version of OpenComRTOS fits 
in the memory of most embedded targets. 
When more memory is available, the full  
kernel fits in less than 10kiB on many tar-
gets. The loop time measurements brought 
out the differences between individual tar-
get architectures. In general however, the 
measured loop times confirm that Open-
ComRTOS performs well on a wide verity  
of possible targets.

Table 5: �OpenComRTOS loop times obtained for our different ports

 	ML X16 	M icroBlaze	L eon3 	ARM  	 XMOS

Clock speed 	 6MHz 	 100MHz 	 40MHz 	 50MHz 	 100MHz

Context size 	 4 x 16bit 	 32 x 32bit 	 32 x 32bit 	 16 x 32bit 	 14 x 32bit

Memory location 	 internal 	 internal 	 external 	 internal 	 internal

Loop time 	 100.8 μs 	 33.6 μs 	 136.1 μs 	 52.7 μs 	 26.8 μs
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1  Stripped down version of OpenComRTOS

The OpenComRTOS project  
has shown that formal  
modelling works very well.


